Showing entries 1 to 10 of 36
10 Older Entries »
Displaying posts with tag: NDB Cluster (reset)
Automatic Memory Management in RonDB

RonDB has now grown up to the same level of memory management as you find in expensive commercial DBMSs like Oracle, IBM DB2 and Microsoft SQL Server.

Today I made the last development steps in this large project. This project started with a prototype effort by Jonas Oreland already in 2013 after being discussed for a long time before that. After he left for Google the project was taken over by Mauritz Sundell that implemented the first steps for operational records in the transaction manager.

Last year I added the rest of the operational records in NDB. Today I completed the programming of the final step in RonDB. This last step meant moving around 30 more internal data structures towards using the global memory manager. These memory structures are used to represent meta data about tables, fragments, fragment replicas, triggers and global replication objects.

One …

[Read more]
How to achieve AlwaysOn

When discussing how to achieve High Availability most DBMS focus on handling it via replication. Most of the focus has thus been focused on various replication algorithms.

However truly achieving AlwaysOn availability requires more than just a clever replication algorithm.

RonDB is based on NDB Cluster, NDB has been able to prove in practice that it can deliver capabilities that makes it possible to build systems with less than 30 seconds of downtime per year.

So what is required to achieve this type of availability?

  1. Replication
  2. Instant Failover
  3. Global Replication
  4. Failfast Software Architecture
  5. Modular Software Architecture
  6. Advanced Crash Analysis
  7. Managed software

Thus a clever replication algorithm is only 1 of 7 very important parts to achieve the highest possible …

[Read more]
Improvements of DBT2 benchmark in RonDB 21.10.1

In the development of RonDB 21.10.1 we have had some focus on improving the performance of the DBT2 benchmark for RonDB.  Actually NDB Cluster already had very good performance for DBT2. However this performance relies on a thread configuration that uses a lot of LDM threads and this means that tables will have very many partitions.

For an application like DBT2 (open source variant of TPC-C) this is not an issue since it is a very scalable application. But most real applications are not as scalable as DBT2 when the number of table partitions increases.

In RonDB we have focused on decreasing the number of table partitions. Thus in RonDB the number of partitions are independent of the number of LDM threads. In DBT2 most of the load are generated towards one of the tables, this means that only a subset of the LDM threads are used in executing DBT2. Even more most of the load is directed towards the primary replicas.

In …

[Read more]
New RonDB releases

It is in the middle of the summer, but we found some time to prepare a new RonDB release. Today we are proud to release new RonDB versions.

https://www.logicalclocks.com/blog/new-rondb-release-21-10-1

RonDB is a stable distribution of NDB Cluster, a key-value store with SQL capabilities. It is based on a release of MySQL, an SQL database server.

RonDB 21.04.1 is the second release of the stable version of RonDB. It contains 3 new features and 18 bug fixes. We plan to support RonDB 21.04 until 2024.

RonDB 21.10.1 is the first beta version of RonDB 21.10. It contains 4 new features that improves throughput of the DBT2 benchmark by 70% compared to RonDB 21.04.1.

Detailed release notes are available in the RonDB documentation.

The new …

[Read more]
HA vs AlwaysOn

 In the 1990s I spent a few years studying requirements on databases used in 3G telecom networks. The main requirement was centered around three keywords, Latency, Throughput and Availability. In this blog post I will focus on Availability.


If a telecom database is down it means that no phone calls can be made, internet connections will not work and your app on your smartphone will cease to work. So more or less impacting each and everyone's life immediately.


The same requirements on databases now also start to appear in AI applications such as online Fraud detection, self-driving cars, smartphone apps.


Availability is measured in percent and for telecom databases the requirement is to reach 99.9999% availability. One often calls this Class 6 availability where 6 is the number of nines in the availability percentage.


Almost every database …

[Read more]
Research on Thread Pipelines using RonDB

 

Introduction

In my previous two blogs on this topic I first introduced the concept of automatic thread configuration and the thread model we use in RonDB. After receiving some questions on the topic I dived a bit deeper into explaining the RonDB thread model and its thread pipeline and compared it to another similar concept called batch pipelines.


Since then I read up a bit more on the research in this area with a focus on implementations in other key-value stores. Some researchers argue that a model where one handles the request immediately is superior to a model using a thread pipeline.

RonDB Software …

[Read more]
Sysbench evaluation of RonDB

 

Introduction

Sysbench is a tool to benchmark to test open source databases. We have integrated Sysbench into the RonDB installation. This makes it extremely easy to run benchmarks with RonDB. This paper will describe the use of these benchmarks in RonDB. These benchmarks were executed with 1 cluster connection per MySQL Server. This limited the scalability per MySQL Server to about 12 VCPUs. Since we executed those benchmarks we have increased the number of cluster connections per MySQL Server to 4 providing scalability to at least 32 VCPUs per MySQL Server.


As preparation to run those benchmarks we have created a RonDB cluster using the Hopsworks framework that is currently used to create …

[Read more]
Designing a Thread Pipeline for optimal database throughput with high IPC and low CPU cache misses

 There are a couple of questions about the blog post on automatic thread configuration in RonDB. Rather than providing an extensive answer in the comment section I thought it was better to answer the questions in a separate blog. In addition I performed a set of microbenchmarks to verify my expectations.


The first question was the following:


ScyllaDB also does something similar with execution stages for better instruction cache. Is this similar to what you're implementing for instruction cache on separating the threads?


The second question is:


I don't really get the functional separation of threads. To execute a query, your data will now go through a pipeline of …

[Read more]
RonDB, automatic thread configuration


This blog introduces how RonDB handles automatic thread configuration. This blog is more technical and dives deeper under the surface of how RonDB operates. RonDB provides a configuration option, ThreadConfig, whereby the user can have full control over the assignment of threads to CPUs, how the CPU locking is to be performed and how the thread should be scheduled.

However for the absolute majority of users this is too advanced, thus the managed version of RonDB ensures that this thread configuration is based on best practices found over decades of testing. This means that every user of the managed version of RonDB will get access to a thread configuration that is optimised for their particular VM size.


In addition RonDB makes use of adaptive CPU spinning in a way that limits the power usage, but still provides very low latency in all database operations. …

[Read more]
What is New in MySQL NDB Cluster 8.0.20

MySQL NDB Cluster 8.0.20 new features 

This post is about changes in the implementation of NDB Cluster from MySQL NDB Cluster 8.0 through 8.0.20, as compared to earlier release series. We have included only those of MySQL NDB Cluster 8.0.20 new features which are really interesting and can directly influence / make an impact to performance, scalability and reliability:

  • MySQL NDB Cluster  development is in parallel with the development of  MySQL Server going forward. What does that mean for MySQL customers globally NDB 8.0 is developed in, built from, and released with the MySQL 8.0 source code tree and numbering scheme for NDB Cluster 8.0 releases follows the scheme for MySQL 8.0 ( starting with version 8.0.13).
  • As of NDB 8.0.18, The identifiers can use up to 64 bytes for databases and tables (the 63-byte limit on identifiers is removed ).
  • Generated names for foreign keys …
[Read more]
Showing entries 1 to 10 of 36
10 Older Entries »