Showing entries 1 to 10 of 39
10 Older Entries »
Displaying posts with tag: Storage Engines (reset)
Scaling IO-Bound Workloads for MySQL in the Cloud – part 2

This post is a followup to my previous article https://www.percona.com/blog/2018/08/29/scaling-io-bound-workloads-mysql-cloud/

In this instance, I want to show the data in different dimensions, primarily to answer questions around how throughput scales with increasing IOPS.

A recap: for the test I use Amazon instances and Amazon gp2 and io1 volumes. In addition to the original post, I also tested two gpl2 volumes combined in software RAID0. I did this for the following reason: Amazon cap the single gp2 volume throughput to 160MB/sec, and as we will see from the charts, this limits InnoDB performance.

Also, a reminder from the previous post: we can increase gp2 IOPS by increasing volume size (to the top limit 10000 IOPS), and for io1 we can increase IOPS by paying per additional IOPS.

Scaling with InnoDB …

[Read more]
Lesson 07: Advanced MySQL Querying

Notes/errata/updates for Chapter 7:
See the official book errata at http://tahaghoghi.com/LearningMySQL/errata.php – Chapter 7 includes pages 223 – 275.

Supplemental blog post – ORDER BY NULL – read the blog post and the comments!

GROUP BY and HAVING examples – Supplemental blog post. The example of HAVING in the text shows a use case where HAVING is the same function as WHERE. This blog posts shows examples of HAVING that you cannot do any other way.

In the section called “The GROUP BY clause”, on pages 231-232, the book says:
“you can count any column in a group, and you’ll get the same answer, so COUNT(artist_name) is the same as …

[Read more]
Percona Blog Poll Results: What Database Engine Are You Using to Store Time Series Data?

In this blog post, we talk about the results of Percona’s time series database poll “What Database Engine Are You Using to Store Time Series Data?”

Time series data is some of the most actionable data available when it comes to analyzing trends and making predictions. Simply put, time series data is data that is indexed not just by value, but by time as well – allowing you to view value changes over time as they occur. Obvious uses include the stock market, web traffic, user behavior, etc.

With the increasing number of smart devices in the Internet of Things (IoT), being able to track data over time is more and more important. With time series data, you can measure and make …

[Read more]
MySQL Marinate – So you want to learn MySQL! – START HERE

Want to learn or refresh yourself on MySQL? MySQL Marinate is the FREE virtual self-study group is for you!

MySQL Marinate quick links if you know what it is all about.

This is for beginners – If you have no experience with MySQL, or if you are a developer that wants to learn how to administer MySQL, or an administrator that wants to learn how to query MySQL, this course is what you want. If you are not a beginner, you will likely still learn some nuances, and it will be easy and fast to do. If you have absolutely zero experience with MySQL, this is perfect for you. The first few chapters walk you through getting and installing MySQL, so all you need is a computer and the book.

The format of a virtual self-study group is as follows:
Each participant acquires the same textbook ( …

[Read more]
Percona Blog Poll: What Database Engine Are You Using to Store Time Series Data?

Take Percona’s blog poll on what database engine you are using to store time series data.

Time series data is some of the most actionable data available when it comes to analyzing trends and making predictions. Simply put, time series data is data that is indexed not just by value, but by time as well – allowing you to view value changes over time as they occur. Obvious uses include the stock market, web traffic, user behavior, etc.

With the increasing number of smart devices in the Internet of Things (IoT), being able to track data over time is more and more important. With time series data, you can measure and make predictions on things like energy consumption, pH values, water consumption, data from environment-aware machines like smart cars, etc. The sensors used in IoT devices and systems generate huge …

[Read more]
Percona Server for MongoDB storage engines in iiBench insert workload

We recently released the GA version of Percona Server for MongoDB, which comes with a variety of storage engines: RocksDB, PerconaFT and WiredTiger.

Both RocksDB and PerconaFT are write-optimized engines, so I wanted to compare all engines in a workload oriented to data ingestions.

For a benchmark I used iiBench-mongo (https://github.com/mdcallag/iibench-mongodb), and I inserted one billion (bln) rows into a collection with three indexes. Inserts were done in ten parallel threads.

For memory limits, I used a 10GB as the cache size, with a total limit of 20GB available for the mongod process, …

[Read more]
InnoDB vs TokuDB in LinkBench benchmark

Previously I tested Tokutek’s Fractal Trees (TokuMX & TokuMXse) as MongoDB storage engines – today let’s look into the MySQL area.

I am going to use modified LinkBench in a heavy IO-load.

I compared InnoDB without compression, InnoDB with 8k compression, TokuDB with quicklz compression.
Uncompressed datasize is 115GiB, and cachesize is 12GiB for InnoDB and 8GiB + 4GiB OS cache for TokuDB.

Important to note is that I used tokudb_fanout=128, which is only available in our latest Percona Server release.
I will …

[Read more]
MySQL Admin 101 for System Admins – key_buffer_size

As discussed in my presentation to NYLUG, I wanted to provide system administrations with some really quick analysis and performance fixes if you had limited knowledge of MySQL.

One of the most important things with MySQL is to tune memory properly. This can be complex as there are global buffers, and per session buffers, memory tables, and differences between storage engines. Even this first tip has conditions.

Configuration of MySQL can be found in the my.cnf file (How can I find that). Some variables are dynamic and some are not, and these can change between versions. Check out The most important MySQL Reference Manual page that everybody should bookmark …

[Read more]
Understanding Tokutek Fractal Tree Indexes


Download PDF Presentation

Thanks to Tim Callaghan for speaking Tuesday night at the Effective MySQL New York meetup on Fractal Tree Indexes : Theory and Practice (MySQL and MongoDB). There was a good turnout and a full room to learn how the TokuDB storage engine from Tokutek is changing how to handle big data in MySQL.

Also interesting is how the same technology has been applied for use in MongoDB including giving MongoDB transactions; a big change for NoSQL.

Related News: …

[Read more]
Plugins & Storage Engines Summit for MySQL/MariaDB

As is tradition after the O’Reilly MySQL Conference & Expo, there tends to be a storage engine summit right afterwards. This year it was expanded to also include plugins. I must graciously thank Facebook for hosting us at their campus, and giving us a rather healthy lunch, plus fueling us with all those drinks, caffeine and snacks that we needed to keep us going. While standing in the doorway, Mark (Callaghan) pointed to us that a certain other Mark (Zuckerberg) was walking into the campus, just like the rest of us.

The very raw notes are up on the Knowledgebase - Plugins & Storage Engines Summit for MySQL/MariaDB/Drizzle 2011. We definitely did not discuss anything Drizzle related, and we barely had time to focus on plugins, so the …

[Read more]
Showing entries 1 to 10 of 39
10 Older Entries »