表示 进入内容 112035
« 先前的 10 新的记录 | 下一步 10 较早的记录 »
Displaying posts with tag: MySQL优化 (reset)
比较全面的MySQL优化参考(上篇)

本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体分析了,可以参考本站的一些优化案例或者联系我,下方有我的联系方式。这是上篇。

1、硬件层相关优化 1.1、CPU相关

在服务器的BIOS设置中,可调整下面的几个配置,目的是发挥CPU最大性能,或者避免经典的NUMA问题:

1、选择Performance Per Watt Optimized(DAPC)模式,发挥CPU最大性能,跑DB这种通常需要高运算量的服务就不要考虑节电了;
2、关闭C1E和C States等选项,目的也是为了提升CPU效率;
3、Memory Frequency(内存频率)选择Maximum Performance(最佳性能);

4、内存设置菜单中,启用Node Interleaving,避免NUMA问题;

[获取更多]
[MySQL优化案例]系列 — slave延迟很大优化方法


备注:插图来自网络搜索,如果觉得不当还请及时告知 :)

一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发。简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制线程只有一个sql thread用于binlog的apply,所以难怪slave在高并发时会远落后master。

ORACLE MySQL 5.6版本开始支持多线程复制,配置选项 slave_parallel_workers 即可实现在slave上多线程并发复制。不过,它只能支持一个实例下多个 database 间的并发复制,并不能真正做到多表并发复制。因此在较大并发负载时,slave还是没有办法及时追上master,需要想办法进行优化。

[获取更多]
[MySQL优化案例]系列 — discuz!热帖翻页优化


备注:插图来自discuz!官方LOGO,如果觉得不当还请及时告知 :)

写在前面:discuz!作为首屈一指的社区系统,为广大站长提供了一站式网站解决方案,而且是开源的(虽然部分代码是加密的),它为这个垂直领域的行业发展作出了巨大贡献。尽管如此,discuz!系统源码中,还是或多或少有些坑。其中最著名的就是默认采用MyISAM引擎,以及基于MyISAM引擎的抢楼功能,session表采用memory引擎等,可以参考后面几篇历史文章。本次我们要说说discuz!在应对热们帖子翻页逻辑功能中的另一个问题。

在我们的环境中,使用的是 MySQL-5.6.6 版本。

在查看帖子并翻页过程中,会产生类似下面这样的SQL:

mysql> desc …
[获取更多]
[MySQL FAQ]系列 — MySQL联合索引是否支持不同排序规则

篇首语:
截止到目前的5.7.4版本为止,MySQL的联合索引仍无法支持联合索引使用不同排序规则,例如:ALTER TABLE t ADD INDEX idx(col1, col2 DESC)。

先来了解下MySQL关于索引的一些基础知识要点:

• a、EXPLAIN结果中的key_len只显示了条件检索子句需要的索引长度,但 ORDER BY、GROUP BY 子句用到的索引则不计入 key_len 统计值;
• b、联合索引(composite index):多个字段组成的索引,称为联合索引;
例如:ALTER TABLE t ADD INDEX `idx` (col1, col2, col3)
• c、覆盖索引(covering index):如果查询需要读取到索引中的一个或多个字段,则可以从索引树中直接取得结果集,称为覆盖索引;
例如:SELECT col1, col2 FROM t;
• d、最左原则(prefix …
[获取更多]
[MySQL FAQ]系列 — 为什么InnoDB表要建议用自增列做主键

我们先了解下InnoDB引擎表的一些关键特征:

  • InnoDB引擎表是基于B+树的索引组织表(IOT);
  • 每个表都需要有一个聚集索引(clustered index);
  • 所有的行记录都存储在B+树的叶子节点(leaf pages of the tree);
  • 基于聚集索引的增、删、改、查的效率相对是最高的;
  • 如果我们定义了主键(PRIMARY KEY),那么InnoDB会选择其作为聚集索引;
  • 如果没有显式定义主键,则InnoDB会选择第一个不包含有NULL值的唯一索引作为主键索引;
  • 如果也没有这样的唯一索引,则InnoDB会选择内置6字节长的ROWID作为隐含的聚集索引(ROWID随着行记录的写入而主键递增,这个ROWID不像ORACLE的ROWID那样可引用,是隐含的)。

[获取更多]
[MySQL FAQ]系列 — 线上环境到底要不要开启query cache

Query Cache(查询缓存,以下简称QC)存储SELECT语句及其产生的数据结果,特别适用于:频繁提交同一个语句,并且该表数据变化不是很频繁的场景,例如一些静态页面,或者页面中的某块不经常发生变化的信息。QC有可能会从InnoDB Buffer Pool或者MyISAM key buffer里读取结果。

由于QC需要缓存最新数据结果,因此表数据发生任何变化(INSERT、UPDATE、DELETE或其他可能产生数据变化的操作),都会导致QC被刷新。

根据MySQL官方的测试,QC的优劣分别是:

[获取更多]
MySQL 5.6 查询优化器新特性的“BUG”

最近碰到一个慢SQL问题,解决过程有点小曲折,和大家分享下。 SQL本身不复杂,表结构、索引也比较简单,不过个别字段存在于多个索引中。

CREATE TABLE `pre_forum_post` (
  `pid` int(10) unsigned NOT NULL,
  `fid` mediumint(8) unsigned NOT NULL DEFAULT '0',
  `tid` mediumint(8) unsigned NOT NULL DEFAULT '0',
  `first` tinyint(1) NOT NULL DEFAULT '0',
  `author` varchar(40) NOT NULL DEFAULT '',
  `authorid` int(10) unsigned NOT NULL DEFAULT '0',
  `subject` varchar(80) NOT NULL DEFAULT '',
  `dateline` int(10) unsigned NOT NULL DEFAULT '0',
  `message` mediumtext NOT NULL,
  `useip` varchar(15) NOT NULL DEFAULT '',
  `invisible` tinyint(1) NOT NULL DEFAULT '0',
  `anonymous` tinyint(1) NOT NULL DEFAULT '0',
  `usesig` tinyint(1) NOT NULL DEFAULT '0',
  `htmlon` tinyint(1) NOT NULL DEFAULT '0',
  `bbcodeoff` tinyint(1) NOT NULL DEFAULT '0',
  `smileyoff` tinyint(1) NOT NULL DEFAULT '0',
  `parseurloff` tinyint(1) NOT NULL …
[获取更多]
个人PPT分享

个人最近几年内整理过的PPT,都放在百度文库上了,大家可以看看 :)

M​y​S​Q​L​ ​t​p​c​h​测​试​工​具​简​要​手​册 高​效​L​i​n​u​x​ ​S​A​ P​C​服​务​器​阵​列​卡​管​理​简​易​手​册​ 服​务​器​基​准​测​试 M​y​S​Q​L​数​据​库​设​计​、​优​化 

[获取更多]
[MySQL优化案例]系列 — 分页优化

通常,我们会采用ORDER BY LIMIT start, offset 的方式来进行分页查询。例如下面这个SQL:

SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 100, 10;

或者像下面这个不带任何条件的分页SQL:

SELECT * FROM `t1` ORDER BY id DESC LIMIT 100, 10;

一般而言,分页SQL的耗时随着 start 值的增加而急剧增加,我们来看下面这2个不同起始值的分页SQL执行耗时:

yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=1 ORDER BY id DESC LIMIT 500, 10;
…

10 rows in set (0.05 sec)


yejr@imysql.com> SELECT * FROM `t1` WHERE ftype=6 ORDER BY id DESC LIMIT 935500, 10;
…

10 rows in set (2.39 sec)

可以看到,随着分页数量的增加,SQL查询耗时也有数十倍增加,显然不科学。今天我们就来分析下,如何能优化这个分页方案。 …

[获取更多]
[MySQL优化案例]系列 — RAND()优化

众所周知,在MySQL中,如果直接 ORDER BY RAND() 的话,效率非常差,因为会多次执行。事实上,如果等值查询也是用 RAND() 的话也如此,我们先来看看下面这几个SQL的不同执行计划和执行耗时。
首先,看下建表DDL,这是一个没有显式自增主键的InnoDB表:

[yejr@imysql]> show create table t_innodb_random\G
*************************** 1. row ***************************
Table: t_innodb_random
Create Table: CREATE TABLE `t_innodb_random` (
`id` int(10) unsigned NOT NULL,
`user` varchar(64) NOT NULL DEFAULT '',
KEY `idx_id` (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=latin1

往这个表里灌入一些测试数据,至少10万以上, id 字段也是乱序的。

[yejr@imysql]> select count(*) from t_innodb_random\G
*************************** 1. row ***************************
count(*): 393216

1、常量等值检索:

[获取更多]
表示 进入内容 112035
« 先前的 10 新的记录 | 下一步 10 较早的记录 »