Home |  MySQL Buzz |  FAQ |  Feeds |  Submit your blog feed |  Feedback |  Archive |  Aggregate feed RSS 2.0 English Deutsch Español Français Italiano 日本語 Русский Português 中文
Considering TokuDB as an engine for timeseries data
+2 Vote Up -0 Vote Down

I am working on a customer’s system where the requirement is to store a lot of timeseries data from different sensors.

For performance reasons we are going to use SSD, and therefore there is a list of requirements for the architecture:

  • Provide high insertion rate
  • Provide a good compression rate to store more data on expensive SSDs
  • Engine should be SSD friendly (less writes per timeperiod to help with SSD wear)
  • Provide a reasonable response time (within ~50 ms) on SELECT queries on hot recently inserted data

Looking on these requirements I actually think that TokuDB might be a good fit for this task.

There are several aspects to consider. This time I want to compare TokuDB vs InnoDB on an initial load time and space consumption.

Let’s assume the schema is following

CREATE TABLE `sensordata` (
  `ts` int(10) unsigned NOT NULL DEFAULT '0',
  `sensor_id` int(10) unsigned NOT NULL,
  `data1` double NOT NULL,
  `data2` double NOT NULL,
  `data3` double NOT NULL,
  `data4` double NOT NULL,
  `data6` double NOT NULL,
  `cnt` int(10) unsigned NOT NULL,
  PRIMARY KEY (`sensor_id`,`ts`)
)

where sensor_id is in a range from 1 to about 1000 and ts is monotonically increasing timestamp.

This schema exploits both TokuDB and InnoDB clustering primary key, and all inserts are “almost” sequential, which guarantee that all inserts will not require disk access and work with data in memory.
The same for SELECTS – select queries on the most recent time periods will be executed only by a memory access.

I am doing this research on the Dell PowerEdge R420 box with 48GB of memory (40GB for InnoDB buffer pool size, and default memory allocation for TokuDB, which is 24GB for tokudb cache). The storage is a very fast PCI-e Flash card.

The test export CSV file, suitable for LOAD DATA INFILE is 40GB in size and contains over 1 bln records (1.238.201.948 exactly)

MySQL Versions:

  • For InnoDB tests I used Percona Server 5.6-RC2
  • For TokuDB tests I used mariadb-5.5.30-tokudb-7.0.4 from Tokutek website

So, first, let’s load data into InnoDB, again, I am using LOAD DATA INFILE statement

  • InnoDB, no compression. Load time is 1 hour 26 min 25.77 sec, final table size is 90GB
  • InnoDB, 8K compression. Load time 3 hours 26 min 17.06 sec, the table size is 45GB
  • InnoDB, 4K compression. Load time 17 hours 23 min 43.48 sec, the table size is 26GB

Now for TokuDB:

  • TokuDB, default compression. Load time 33 min 1.18 sec, the table size on disk is 10GB
  • TokuDB, tokudb_small table format. Load time 37 min 2.34 sec, the table size is 4.6GB

So TokuDB is the obvious leader in both load time and compression. Of course just these are not enough, and now we need to see the performance of further INSERTs and SELECTs queries. This is what I am running right now and will post the results when I have them.

The post Considering TokuDB as an engine for timeseries data appeared first on MySQL Performance Blog.

Votes:

You must be logged in with a MySQL account to vote on Planet MySQL entries. More information on PlanetMySQL voting.

Planet MySQL © 1995, 2014, Oracle Corporation and/or its affiliates   Legal Policies | Your Privacy Rights | Terms of Use

Content reproduced on this site is the property of the respective copyright holders. It is not reviewed in advance by Oracle and does not necessarily represent the opinion of Oracle or any other party.