Showing entries 1 to 4
Displaying posts with tag: shared-nothing (reset)
ScaleDB: Shared-Disk / Shared-Nothing Hybrid

The primary database architectures—shared-disk and shared-nothing—each have their advantages. Shared-disk has functional advantages such as high-availability, elasticity, ease of set-up and maintenance, eliminates partitioning/sharding, eliminates master-slave, etc. The shared-nothing advantages are better performance and lower costs. What if you could offer a database that is a hybrid of the two; one that offers the advantages of both. This sounds too good to be true, but it is fact what ScaleDB has done.
The underlying architecture is shared-disk, but in many situations it can operate like shared-nothing. You see the problems with shared-disk arise from the messaging necessary to (a) ship data among nodes and storage; and (b) synchronize the nodes in the cluster. The trick is to move the messaging outside of the transaction so it doesn’t impact performance. The way to achieve that is to exploit locality. Let …

[Read more]
The CAP Theorem Event Horizon

The CAP Theorem has become a convenient excuse for throwing data consistency under the bus. It is automatically assumed that every distributed system falls prey to CAP and therefore must sacrifice one of the three objectives, with consistency being the consistent fall guy. This automatic assumption is simply false. I am not debating the validity of the CAP Theorem, but instead positing that the onset of CAP limitations—what I call the CAP event horizon—does not start as soon as you move to a second master database node. Certain approaches can, in fact, extend the CAP event horizon.

Database Architectures & Performance

For decades the debate between shared-disk and shared-nothing databases has raged. The shared-disk camp points to the laundry list of functional benefits such as improved data consistency, high-availability, scalability and elimination of partitioning/replication/promotion. The shared-nothing camp shoots back with superior performance and reduced costs. Both sides have a point.

First, let’s look at the performance issue. RAM (average access time of 200 nanoseconds) is considerably faster than disk (average access time of 12,000,000 nanoseconds). Let me put this 200:12,000,000 ratio into perspective. A task that takes a single minute in RAM would take 41 days in disk. So why do I bring this up?

Shared-Nothing: Since the shared-nothing database has sole ownership of its data—it doesn’t share the data with other nodes—it can operate in the machine’s local RAM, only writing infrequently to disk (flushing the data …

[Read more]
Virtual Databases: The Face of the New Cloud Database

Shared-disk databases can be virtualized—making them cloud-friendly—while shared-nothing databases are tied to a specific computer and a specific data set or data partition.

The underlying principle of the shared-nothing RDBMS is that a single master server owns its specific set of data. That data is not shared, hence the name shared-nothing. Because there is no ability to share the data, there is also no ability to virtualize the computing of that data. Instead the shared-nothing RDBMS ties the data and the computing to a specific computer. This association with a physical machine is then reinforced at the application level. Applications leveraging a shared-nothing database, that is partitioned across more than one server, use routing code. Routing code simply directs the various database requests to the servers that own the data being requested. In other words, the application must know which server owns which piece of data. …

[Read more]
Showing entries 1 to 4