Planet MySQL Planet MySQL: Meta Deutsch Español Français Italiano 日本語 Русский Português 中文
Showing entries 1 to 10 of 17 7 Older Entries

Displaying posts with tag: nehalem (reset)

Multi-instance memcached performance
Employee +0 Vote Up -0Vote Down

As promised, here are more results running memcached on Sun's X2270 (Nehalem-based server). In my previous post, I mentioned that we got 350K ops/sec running a single instance of memcached at which point the throughput was hampered by the scalability issues of memcached. So we ran two instances of memcached on the same server, each using 15GB of memory and tested both 1.2.5 and 1.3.2 versions. Here are the results :

The maximum throughput was 470K ops/sec using 4 threads in memcached 1.3.2. Performance of 1.2.5 was just very slightly lower. At this throughput, the network capacity of the single 10gbe card was reached as the benchmark does a lot of small packet transfers. See my

  [Read more...]
Multi-instance memcached performance
Employee +0 Vote Up -0Vote Down

As promised, here are more results running memcached on Sun's X2270 (Nehalem-based server). In my previous post, I mentioned that we got 350K ops/sec running a single instance of memcached at which point the throughput was hampered by the scalability issues of memcached. So we ran two instances of memcached on the same server, each using 15GB of memory and tested both 1.2.5 and 1.3.2 versions. Here are the results :

The maximum throughput was 470K ops/sec using 4 threads in memcached 1.3.2. Performance of 1.2.5 was just very slightly lower. At this throughput, the network capacity of the single 10gbe card was reached as the benchmark does a lot of small packet transfers. See my

  [Read more...]
Multi-instance memcached performance
Employee +0 Vote Up -0Vote Down

As promised, here are more results running memcached on Sun's X2270 (Nehalem-based server). In my previous post, I mentioned that we got 350K ops/sec running a single instance of memcached at which point the throughput was hampered by the scalability issues of memcached. So we ran two instances of memcached on the same server, each using 15GB of memory and tested both 1.2.5 and 1.3.2 versions. Here are the results :

The maximum throughput was 470K ops/sec using 4 threads in memcached 1.3.2. Performance of 1.2.5 was just very slightly lower. At this throughput, the network capacity of the single 10gbe card was reached as the benchmark does a lot of small packet transfers. See my

  [Read more...]
GF + MySQL + Nehalem = 2925.18 JOPS
Employee_Team +0 Vote Up -0Vote Down

We have published a new SPECjAppServer 2004 result: 2925.18 JOPS@Standard. Total list price for the configuration, software and hardware together, is $78,834.00, yielding $26.95 per $/JOPS (or, if you are brave enough to go without support, $13.29).

The setup includes GlassFish v2.1 and MySQL (http://mysql.com)

  [Read more...]
MySQL 5.4 Scaling on Nehalem with Sysbench
Employee +1 Vote Up -0Vote Down
As a final followup to my MySQL 5.4 Scalability on 64-way CMT Servers blog, I'm posting MySQL 5.4 Sysbench results on a Sun Fire X4270 platform using the Intel x86 Nehalem chip (2 sockets/8 cores/16 threads). All CPUs were turned on during the runs. The my.cnf was the same as described in the previous blog.

The Sysbench version used was 0.4.12, and the read-only runs were invoked with the following command:

sysbench --max-time=300 --max-requests=0 --test=oltp --oltp-dist-type=special --oltp-table-size=10000000 \
   --oltp-read-only=on --num-threads=[NO_THREADS] run

The "oltp-read-only=on" parameter was omitted for the read-write tests. The my.cnf file listed in my previous blog was also used unchanged for these tests.

Here are the results graphically running on Linux.

  [Read more...]
MySQL 5.4 Scaling on Nehalem with Sysbench
Employee +0 Vote Up -0Vote Down
As a final followup to my MySQL 5.4 Scalability on 64-way CMT Servers blog, I'm posting MySQL 5.4 Sysbench results on a Sun Fire X4270 platform using the Intel x86 Nehalem chip (2 sockets/8 cores/16 threads). All CPUs were turned on during the runs. The my.cnf was the same as described in the previous blog.

The Sysbench version used was 0.4.12, and the read-only runs were invoked with the following command:

sysbench --max-time=300 --max-requests=0 --test=oltp --oltp-dist-type=special --oltp-table-size=10000000 \\
   --oltp-read-only=on --num-threads=[NO_THREADS] run

The "oltp-read-only=on" parameter was omitted for the read-write tests. The my.cnf file listed in my previous blog was also used unchanged for these tests.

Here are the results graphically running on Linux.

  [Read more...]
MySQL 5.4 Scaling on Nehalem with Sysbench
Employee +0 Vote Up -0Vote Down
As a final followup to my MySQL 5.4 Scalability on 64-way CMT Servers blog, I'm posting MySQL 5.4 Sysbench results on a Sun Fire X4270 platform using the Intel x86 Nehalem chip (2 sockets/8 cores/16 threads). All CPUs were turned on during the runs. The my.cnf was the same as described in the previous blog.

The Sysbench version used was 0.4.12, and the read-only runs were invoked with the following command:

sysbench --max-time=300 --max-requests=0 --test=oltp --oltp-dist-type=special --oltp-table-size=10000000 \\
   --oltp-read-only=on --num-threads=[NO_THREADS] run

The "oltp-read-only=on" parameter was omitted for the read-write tests. The my.cnf file listed in my previous blog was also used unchanged for these tests.

Here are the results graphically running on Linux.

  [Read more...]
Memcached Performance on Sun's Nehalem System
Employee +0 Vote Up -0Vote Down

Memcached is the de-facto distributed caching server used to scale many web2.0 sites today. With the requirement to support a very large number of users as sites grow, memcached aids scalability by effectively cutting down on MySQL traffic and improving response times.

Memcached is a very light-weight server but is known not to scale beyond 4-6 threads. Some scalability improvements have gone into the 1.3 release (still in beta). With the new Intel Nehalem based systems improved hyper-threading providing twice as much performance as current systems, we were curious to see how memcached would perform on these systems. So we ran some tests, the results of which are shown below :





  [Read more...]
Memcached Performance on Sun's Nehalem System
Employee +0 Vote Up -0Vote Down

Memcached is the de-facto distributed caching server used to scale many web2.0 sites today. With the requirement to support a very large number of users as sites grow, memcached aids scalability by effectively cutting down on MySQL traffic and improving response times.

Memcached is a very light-weight server but is known not to scale beyond 4-6 threads. Some scalability improvements have gone into the 1.3 release (still in beta). With the new Intel Nehalem based systems improved hyper-threading providing twice as much performance as current systems, we were curious to see how memcached would perform on these systems. So we ran some tests, the results of which are shown below :





  [Read more...]
Memcached Performance on Sun's Nehalem System
Employee +0 Vote Up -0Vote Down

Memcached is the de-facto distributed caching server used to scale many web2.0 sites today. With the requirement to support a very large number of users as sites grow, memcached aids scalability by effectively cutting down on MySQL traffic and improving response times.

Memcached is a very light-weight server but is known not to scale beyond 4-6 threads. Some scalability improvements have gone into the 1.3 release (still in beta). With the new Intel Nehalem based systems improved hyper-threading providing twice as much performance as current systems, we were curious to see how memcached would perform on these systems. So we ran some tests, the results of which are shown below :





  [Read more...]
Showing entries 1 to 10 of 17 7 Older Entries

Planet MySQL © 1995, 2014, Oracle Corporation and/or its affiliates   Legal Policies | Your Privacy Rights | Terms of Use

Content reproduced on this site is the property of the respective copyright holders. It is not reviewed in advance by Oracle and does not necessarily represent the opinion of Oracle or any other party.